Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution

Human activities greatly impact surface water quality, while being reliant upon it for water supply. Surface water quality is expected to change in the future as a result of alterations to pollutant loadings, surface water withdrawals and hydrological regimes, driven by both climate change and socio-economic developments. Here we use a high-resolution global surface water quality model to project water temperature and indicators of salinity (total dissolved solids), organic (biological oxygen demand) and pathogen (fecal coliform) pollution until 2100. The results show that while surface water quality, as indicated by these pollutants, will improve in most advanced economies, the outlook for poorer nations is bleak. The proportion of the global population exposed to salinity, organic and pathogen pollution by the end of the century ranges from 17 to 27%, 20 to 37% and 22 to 44%, respectively, with poor surface water quality disproportionately affecting people living in developing countries. Exhibiting the largest increases in both the absolute and relative number of people exposed, irrespective of climate change and socio-economic development scenario, we conclude that Sub-Saharan Africa will become the new hotspot of surface water pollution globally.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Current and future global water scarcity intensifies when accounting for surface water quality

Article 23 May 2024

Current wastewater treatment targets are insufficient to protect surface water quality

Article Open access 06 October 2022

A triple increase in global river basins with water scarcity due to future pollution

Article Open access 06 February 2024

Data availability

Global hydrological and surface water quality output at 10 km resolution, per GCM and global change scenario (RCP–SSP), is available open-access at https://doi.org/10.5281/zenodo.7811612.

Code availability

The surface water quality model used in this study, DynQual, is available open-access through a GitHub repository (https://github.com/UU-Hydro/DYNQUAL).

References

  1. Arnell, N. W. Climate change and global water resources. Global Environ. Change9, S31–S49 (1999). ArticleGoogle Scholar
  2. Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA111, 3251–3256 (2014). ArticleCASPubMedGoogle Scholar
  3. Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun.11, 3044 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  4. Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change11, 591–597 (2021). ArticleGoogle Scholar
  5. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change4, 17–22 (2014). ArticleGoogle Scholar
  6. Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev.9, 175–222 (2016). ArticleGoogle Scholar
  7. Jones, E. R. et al. Current wastewater treatment targets are insufficient to protect surface water quality. Commun. Earth Environ.3, 221 (2022). ArticleGoogle Scholar
  8. van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett.16, 024020 (2021). ArticleGoogle Scholar
  9. Jones, E. R. et al. DynQual v1.0: a high-resolution global surface water quality model. Geosci. Model Dev. Discuss.2022, 1–24 (2022). Google Scholar
  10. Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data13, 237–254 (2021). ArticleGoogle Scholar
  11. Bosmans, J. et al. FutureStreams, a global dataset of future streamflow and water temperature. Sci. Data9, 307 (2022). ArticlePubMedPubMed CentralGoogle Scholar
  12. Reder, K., Flörke, M. & Alcamo, J. Modeling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environ. Model. Softw.63, 251–263 (2015). ArticleGoogle Scholar
  13. Caretta, M. A. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (eds H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama) pp. 551–712 (Cambridge Univ. Press, 2022).
  14. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA111, 3245–3250 (2014). ArticleCASPubMedGoogle Scholar
  15. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change42, 153–168 (2017). ArticleGoogle Scholar
  16. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change42, 169–180 (2017). ArticleGoogle Scholar
  17. Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dynam.5, 15–40 (2014). ArticleGoogle Scholar
  18. Döll, P. et al. Risks for the global freshwater system at 1.5 °C and 2 °C global warming. Environ. Res. Lett.13, 044038 (2018). ArticleGoogle Scholar
  19. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A quantitative investigation of the thresholds for two conventional water scarcity indicators using a state-of-the-art global hydrological model with human activities. Water Resour. Res.54, 8279–8294 (2018). ArticleGoogle Scholar
  20. van Vliet, M. et al. Global river discharge and water temperature under climate change. Global Environ. Change23, 450–464 (2013). ArticleGoogle Scholar
  21. Sutanudjaja, E. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev.11, 2429–2453 (2018). ArticleGoogle Scholar
  22. UNEP. A snapshot of the world’s water quality: towards a global assessment. United Nations Environment Programme, Nairobi, Kenyahttps://www.unep.org/resources/publication/snapshot-report-worlds-water-quality (2016).
  23. Büchner, S. L. A. ISIMIP3b bias-adjusted atmospheric climate input data. ISIMIPhttps://doi.org/10.48364/ISIMIP.842396.1 (2021).
  24. Hoch, J. M., Sutanudjaja, E. H., Wanders, N., van Beek, R. L. P. H. & Bierkens, M. F. P. Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent. Hydrol. Earth Syst. Sci.27, 1383–1401 (2023). ArticleGoogle Scholar
  25. Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resour. Res.55, 2760–2778 (2019). ArticleGoogle Scholar
  26. Her, Y. et al. Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Sci. Rep.9, 4974 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  27. van der Wiel, K., Wanders, N., Selten, F. M. & Bierkens, M. F. P. Added value of large ensemble simulations for assessing extreme river discharge in a 2 °C warmer world. Geophys. Res. Lett.46, 2093–2102 (2019). ArticleGoogle Scholar
  28. Damania, R., Desbureaux, S., Rodella, A.-S., Russ, J. & Zaveri, E. Quality Unknown: the Invisible Water Crises (World Bank Group, 2019). BookGoogle Scholar
  29. Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes. Nat. Commun.12, 1701 (2021). ArticleCASPubMedPubMed CentralGoogle Scholar
  30. Wen, Y., Schoups, G. & van de Giesen, N. Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change. Sci. Rep.7, 43289 (2017). ArticleCASPubMedPubMed CentralGoogle Scholar
  31. Desbureaux, S. et al. Mapping global hotspots and trends of water quality (1992–2010): a data driven approach. Environ. Res. Lett.17, 114048 (2022). ArticleGoogle Scholar
  32. GEMStat database of the Global Environment Monitoring System for Freshwater (GEMS/Water) Programme (UNEP, 2020); https://gemstat.org/data/data-portal/
  33. Beusen, A. H. W. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways. Global Environ. Change72, 102426 (2022). ArticleGoogle Scholar
  34. Xie, H. & Ringler, C. Agricultural nutrient loadings to the freshwater environment: the role of climate change and socioeconomic change. Environ. Res. Lett.12, 104008 (2017). ArticleGoogle Scholar
  35. Morée, A. L., Beusen, A. H. W., Bouwman, A. F. & Willems, W. J. Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochem. Cycles27, 836–846 (2013). ArticleGoogle Scholar
  36. Van Drecht, G., Bouwman, A. F., Harrison, J. & Knoop, J. M. Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob. Biogeochem. Cycleshttps://doi.org/10.1029/2009gb003458 (2009).
  37. Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett.11, 084003 (2016). ArticleGoogle Scholar
  38. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev.13, 5425–5464 (2020). ArticleCASGoogle Scholar
  39. Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data5, 180227 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  40. Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res.54, 6423–6440 (2018). ArticleGoogle Scholar
  41. Lohrmann, A., Farfan, J., Caldera, U., Lohrmann, C. & Breyer, C. Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery. Nat. Energy4, 1040–1048 (2019). ArticleGoogle Scholar
  42. van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manage.231, 446–456 (2019). ArticlePubMedGoogle Scholar
  43. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S.-M. The state of desalination and brine production: a global outlook. Sci. Total Environ.657, 1343–1356 (2019). ArticleCASPubMedGoogle Scholar
  44. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017). ArticleGoogle Scholar
  45. Fipps, G. Irrigation water quality standards and salinity management strategies. Texas FARMER Collectionhttps://twon.tamu.edu/wp-content/uploads/sites/3/2021/06/irrigation-water-quality-standards-and-salinity-management-strategies-1.pdf (2003).
  46. Zaman, M., Shahid, S. A. & Heng, L. in Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques 113–131 (Springer International Publishing, 2018).
  47. Nahian, M. A. et al. Drinking water salinity associated health crisis in coastal Bangladesh. Elementa Sci Anthr.https://doi.org/10.1525/elementa.143 (2018).

Acknowledgements

M.T.H.v.V. was financially supported by the Netherlands Scientific Organisation (NWO) by a VIDI grant (VI.Vidi.193.019) and European Research Council under the European Union’s Horizon Europe research and innovation programme (grant agreement 101039426). We acknowledge and thank the Netherlands Organisation for Scientific Research (NWO) for the grant that enabled us to use the national supercomputer Snellius (project: EINF-3999).

Author information

Authors and Affiliations

  1. Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands Edward R. Jones, Marc F. P. Bierkens, Ludovicus (Rens) P. H. van Beek, Niko Wanders, Edwin H. Sutanudjaja & Michelle T. H. van Vliet
  2. Deltares, Unit Soil and Groundwater Systems, Utrecht, the Netherlands Marc F. P. Bierkens
  3. PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands Peter J. T. M. van Puijenbroek
  1. Edward R. Jones